

CHAPTER 15

15.1 What Are Waves?

 Mechanical waves are produced when a source of energy causes a medium to vibrate.

15.1 What Are Waves?

 Mechanical waves are classified by how they move. There are two types of mechanical waves: transverse waves and longitudinal waves.

• A DISTURBANCE THAT TRANSFERS ENERGY FROM PLACE TO PLACE.

energy

• The ability to do work or cause change.

medium

• The material through which a wave travels.

mechanical wave

 A wave that needs a medium through which to travel.

vibration

A repeated back and forth or up and down motion.

transverse wave

 A wave that moves the medium in a direction perpendicular to the direction in which the wave travels.

crest

The highest part of a transverse wave

trough

• The lowest part of a transverse wave.

longitudinal wave

 A wave that moves a medium in a direction parallel to the direction in which the wave travels.

compression

 The part of a longitudinal wave where the particles of the medium are close together

rarefaction

• The part of a longitudinal wave where the particles of the medium are farther apart.

15.2 Properties of Waves

 The basic properties of waves are amplitude, wavelength, frequency, and speed

15.2 Properties of Waves

 The speed, wavelength, and frequency of a wave are related to one another by a mathematical formula:

Speed = Wavelength × Frequency

amplitude

 The maximum distance the particles of a medium move away from their rest positions as a wave passes through the medium.

wavelength

The distance between two corresponding parts of a wave.

• The number of complete waves that pass a given point in a certain amount of time.

hertz (Hz)

- Unit of measurement of frequency
- 1 Hz = 1 wave/second

• When an object or a wave hits a surface through which it cannot pass, it bounces back.

 When a wave enters a new medium at an angle, one side of the wave changes speed before the other side, causing the wave to bend.

 When a wave moves around a barrier or through an opening in a barrier, it bends and spreads out.

 There are two types of interference: constructive and destructive

 If the incoming wave and a reflected wave have just the right frequency, they produce a combined wave that appears to be standing still.

reflection

 The bouncing back of an object or a wave when it hits a surface through which it cannot pass.

law of reflection

• The rule that the angle of reflection equals the angle of incidence.

refraction

 The bending of waves as they enter a medium at an angle.

diffraction

 The bending of waves as they move around a barrier or pass through an opening

interference

• The interaction of waves that meet.

constructive interference

 The interference that occurs when waves combine to make a wave with a larger amplitude.

destructive interference

 The interference that occurs when two waves combine to make a wave with a smaller amplitude.

standing wave

 A wave that appears to stand in one place, even though it is really two waves interfering as they pass through each other.

node

A point of zero amplitude on a standing wave.

antinode

A point of maximum amplitude on a standing wave.

resonance

 The increase in the amplitude of a vibration that occurs when external vibrations match an object's natural frequency.

15.4 Seismic Waves

 Seismic waves include P waves, S waves, and surface waves.

15.4 Seismic Waves

 A seismograph records the ground movements caused by seismic waves as they move through Earth.

seismic wave

• A wave produced by an earthquake.

(D)

P wave

• A longitudinal seismic wave.

S wave

• A transverse seismic wave.

surface wave

 A combination of a longitudinal wave and a transverse wave that travels along the surface of a medium.

tsunami

• A huge surface wave on the ocean caused by an underwater earthquake.

seismograph

 An instrument used to detect and measure earthquake waves.

